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SYNOPSIS 

Tire and rubber waste recycling is an important issue facing the rubber industry. In ad- 
dressing this issue, the present article describes the first attempt to formulate a model and 
to simulate a novel continuous ultrasonic devulcanization process. The proposed model is 
based upon a mechanism of rubber network breakup caused by cavitation, which is created 
by high-intensity ultrasonic waves in the presence of pressure and heat. Dynamics of bubble 
behavior is described by the Notlingk-Neppiras equation with incorporation of an additional 
term based upon elastic strain-energy potential. Acoustic pressure arising in the ultrasonic 
field is related to void formation. Their concentration is calculated based upon nucleation 
and growth of gas bubbles in crosslinked elastomers under negative driving pressure. The 
breakup of a three-dimensional network in crosslinked rubbers is combined with flow mod- 
eling. The viscosity function required for this modeling is based upon a power-law model 
which includes temperature, shear rate, and gel fraction dependence. 0 1996 John Wiley & 
Sons, Inc. 

INTRODUCTION 

During the last decade, Isayev and co-workers 1-3 

carried out extensive studies in an attempt to de- 
velop a polymer processing technology which utilizes 
high-power ultrasonics. It was shown that during 
extrusion high-intensity ultrasonic waves affect the 
die characteristics by reducing the pressure and die 
swell and postpone melt fracture. The ultrasonic 
waves can also breakdown the molecular chains 
which permanently reduce the viscosity of the orig- 
inal polymer melt. The breakdown of molecular 
chains occurs not only in polymer melts but also in 
polymer solutions. Degradation of polymer solutions 
has a long h i ~ t o r y . ~ - ~  There is now overwhelming 
evidence that degradation in polymer solutions oc- 
curs as a result of the cavitation process associated 
with the stresses generated by the ultrasonic waves 
and their rate of change. The effect of cavitation is 
due to the presence of voids or density fluctuation 
in a liquid. The mechanism of the ultrasonic effect 
on fluids was extensively studied by Suslick and co- 

* To whom correspondence should be addressed. 
Journal of Applied Polymer Science, Val. 59, 803-813 (1996) 
0 1996 John Wiley & Sons, Inc. CCC 002 1 -8995/96/050803- 1 1 

 worker^.^,^ Acoustic cavitation is also observed in 
polymer melts.g It has also been found that high- 
intensity ultrasonics imposed during foam formation 
improve the uniformity, reduce the size of the cell 
structure, and enhance the mechanical properties of 
the foam." 

Recently, it was discovered that ultrasonic waves 
of certain levels, in the presence of pressure and 
heat, rapidly breakup the three-dimensional network 
in vulcanized The devulcanized rubber 
becomes soft. It can be reprocessed, shaped, and re- 
vulcanized in much the same way as a virgin rub- 
ber.13 The process of ultrasonic devulcanization is 
very fast and occurs on the order of a second or less. 
The latter allowed us to develop a continuous process 
of devulcanization. References 13 and 14 also de- 
scribed some recent preliminary experiments and 
efforts to understand a possible mechanism of the 
devulcanization and attempt to scale up the process. 
In particular, the performed measurements indicate 
that the rubbers are partially devulcanized and the 
devulcanization process is accompanied by some 
degradation. In addition, the preliminary results of 
the modeling of the process of devulcanization were 
reported in Ref. 15, where a simple model was for- 
mulated and simulation results were compared with 
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experiments, Furthermore, a review of alternative 
methods of devulcanization including chemical, 
thermomechanical, and microwave techniques was 
presented in recent papers by Warner l6 and Isayev 
et al.13 

The present study describes the further devel- 
opment of a theoretical model proposed in Ref. 15 
for the devulcanization process. The present mod- 
ification of the process model includes the improved 
treatment of the kinetics of void formation and con- 
siders the interaction among acoustic pressure am- 
plitude, ambient pressure, void fraction in rubber, 
and parameters of ultrasonic waves. A simulation 
and comparison between predicted and experimental 
data are to be presented in the Part I1 of this study. 

THEORETICAL MODELING 

Theoretical modeling of the devulcanization process 
includes two main aspects: ( 1 ) on a microlevel, net- 
work degradation in ultrasonic fields, and ( 2 )  on a 
macrolevel, material behavior (temperature, pres- 
sure, velocity and shear rate) during flow in the de- 
vulcanization process. Evidently, the temperature, 
pressure, etc., affect the rate of the network degra- 
dation and vice versa. These two problems are in- 
herently coupled, and they cannot be solved sepa- 
rately. In addition, there are many particular sub- 
problems such as molecular structure and structural 
behavior of the network which have to be studied 
theoretically in more detail. Thus, some simplifying 
assumptions should be made to handle this task. 
The proposed model inevitably includes fitting pa- 
rameters which are to be specified based on com- 
parison between theoretical modeling and experi- 
mental data. The number of the fitting parameters 
are kept to a minimum. 

Devulcanization Modeling 

In formulating the devulcanization model, the fol- 
lowing assumptions are made: ( 1) The breakup of 
the network chains and crosslinks are independent 
processes; ( 2 ) the overall rate of molecular breakup 
is inversely proportional to the relative strength of 
the bond and proportional to the number of locally 
overstressed molecular bonds; ( 3 )  the rate of de- 
vulcanization is governed by an average residence 
time (this assumption leads to a uniform rate of 
devulcanization at any particular cross section) ; and 
( 4 )  cavitation is a dominant mechanism governing 
the devulcanization process and collapsing cavities 
are considered to be noninteractive. Experimental 

evidence indicating the presence of cavitation in the 
devulcanization process is given in Part I1 of this 
study. 

Based on assumptions 1-3, the rate of breakup 
for various bonds can be written as 

where Ni ( t )  is the number of the molecular bonds 
present in the system at an average residence time 
t ,  with Nio being their number at some initial time; 
Nin, the current number of “active” molecular bonds 
which are subjected to a local overstressing; Ei , the 
bond strength; Eo, the reference strength (carbon- 
carbon bond strength can be chosen as Eo,  i.e.: Eo 
= E c ) ;  and kl ,  a rate constant. In eq. ( l) ,  the sub- 
script i denotes the specific type of the molecular 
bonds under consideration: i = C refers to the C - C 
bonds of the main chain, i = Vk refers to the cross- 
links of K-th type (e.g., i = u1 for monosulfidic 
C-S-C, and i = u, for polysulfidic C- 
S * - * S - C crosslinks). - 

I 

Based on assumption 4, the number of “active” 
bonds per unit volume can be expressed as 

where AVO is the “active” volume around a single 
collapsing bubble (Fig. 1 ) , and Nb, the concentration 
of the collapsing bubbles. The product of AV,Ni is 
the fraction of the total existing bonds which are 
affected by local overstressing around a single col- 
lapsing bubble. In turn, the “active” volume AV, is 
the volume of the spherical shell with inner radius 

Figure 1 
ment around the collapsing bubble. 

Schematic of the overstressed network frag- 
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R,,, and thickness AL,, where R,,, is the bubble 
radius just before collapsing. The parts of the mo- 
lecular chains located near the collapsing bubble are 
subjected to the highest tensile forces which are 
supposed to be high enough to breakup the molecular 
bonds. The acting forces are decreasing with in- 
creasing distance from the bubble wall and above 
some distance AL, are not sufficient to breakup the 
molecular bonds. It is assumed that AL, is of the 
order of the Kuhn’s segment l7 length with the mo- 
lecular chain considered to be rigid. To estimate the 
value of the AL, more precisely, one needs to con- 
sider the problem of the dynamic network defor- 
mation and stress distribution around the collapsing 
bubble. This problem is out of our scope now, and 
here we will treat AL, as a model parameter satis- 
fying condition AL, 4 R,,,. Hence, 

N 47rRk,, AL, ( 3 )  

The magnitude of R,,, is determined from the 
simulation of the cavitation process in crosslinked 
rubber. It is a function of the intensity of the ultra- 
sonic waves, the current hydrostatic pressure, the 
frequency and amplitude of the ultrasonic waves, 
and the elastic characteristics of the material. A de- 
scription of the modeling of the cavitation process 
is presented in the next section. 

Integration of eq. ( 1) and making use of eqs. ( 2 )  
and ( 3 )  leads to 

EC N i ( t )  = Ni(0)exp -47rK- [ Ei 

where K = klAL, is a constant. In eq. ( 4 ) ,  the values 
R,,, and Nb are time-dependent since they are the 
functions of pressure which, in turn, varies with flow 
along the die length. The constant K is fitting pa- 
rameter which is to be specified from comparison of 
the theoretical and experimental results on the gel 
fraction of the material after devulcanization. 

Now, one needs to specify the values of Ni (0 )  in 
eq. ( 4 ) .  Suppose that the network was produced 
from originally “infinite” linear molecules by the 
addition of different kinds of crosslinks: Y = cvk, 
where Yk is the number of moles of the k-th crosslinks 
in a unit volume, and Y, the total number of moles 
of various crosslinks in a unit volume. The number 

of moles of the “ideal” network chains (the main 
chain segments between two subsequent crosslinks ) 
in a unit volume is equal’’ to n = 2v. Hence, the 
number of the network chains, N,, and the number 
of k-th crosslinks, Nvk, in a unit volume are given 
by 

where pa is the material density; M,, the molecular 
weight of the initial network chain; and N A ,  Avo- 
gadro’s number. Relations given by eq. ( 5 )  are the 
initial conditions for the calculation of the kinetics 
of network chains and crosslinks degradation. 

With an increasing amount of main chain and 
crosslink scissions, the gel fraction decreases. Mod- 
eling the gel fraction in relation to the number of 
broken main chains and crosslinks is a complex 
problem and needs special consideration. One can 
use, e.g., the Monte Carlo technique to solve this 
problem. However, it is clear that if there are no 
broken crosslinks the network gel fraction is equal 
to one. If all crosslinks are broken, the gel fraction 
is equal to zero. As a first approximation satisfying 
these conditions, one can use the following equation 
to estimate the network gel fraction [( t )  at  time t :  

where to is a gel fraction of the original material, 
and N,( t )  , the material crosslink density at time t :  

Cavitation Modeling 

Let us consider a spherical bubble contained in a 
large body of an incompressible polymer. Initially, 
at time t = 0, the system is at rest with a bubble 
radius Ro and uniform ambient pressure Po. The 
equation for the spherically symmetric motion for 
a gas bubble, in which there is no gas condensation 
or evaporation, can be reduced to” 

where r = R ( t )  is the radial position of the bubble- 
polymer interface, with Pi and P, denoting the 
pressure in the polymer at r = R ( t )  and r = co , 
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respectively. The dots denote derivatives with re- 
spect to t .  Equation (8) is a linear momentum con- 
servation principle. It states that the media outside 
the bubble wall accelerates in response to pressure 
driving forces (Pi  - P, ) . 

Based on the force balance at the bubble-polymer 
interface in the cavity, the term Pi in eq. ( 8 )  can be 
expressed in terms of surface tension, a, and the 
radial stress, T,, 

2a  
R 

Pg = Pi + Trr,i + - 

where g refers to any gas which may be present in 
the cavity, and i, to the polymer-gas interface. As- 
suming adiabatic changes, the gas pressure is ex- 
pressed as2' 

Pg= ( Po+- :)(y - 

where y is the ratio of the specific heats of the gas. 
The term T ~ ~ , ~  takes into account the elastic re- 

sponse of polymer due to the bubble motion. This 
response can be estimated by means of the theory 
of large deformations assuming a particular form of 
the stored-energy function, W, for the rubber. In 
the present case, the value of T ~ ~ , ~  is calculated based 
on the deformation caused by the inflation of a thick- 
walled spherical shelL2' For a shell with an infinitely 
thick wall (e.g., for a rubber block containing a small 
spherical cavity, Fig. 2 ) ,  the relation between infla- 
tion pressure, P,, and extension ratio, X = (R/Ro), 
of the circumference of the inner surface takes the 
form22 

In deriving this equation, it is assumed that rubber 
obeys a logarithmic form for the stored-energy 
function23: 

W = Wl(Il - 3) + W21n (1 512 ) ( 1 2 )  

In eq. (12 ) ,  Il and I2 are the strain invariants and 
Wl and W, are constants. 

For the cavity in equilibrium state, ~ ~ ~ , i  = P,. 
Hence, the interfacial pressure is given by 

Figure 2 Inflation of a cavity contained in a large body. 

When a cavity is set into motion by sound field, 
both the pressure at the interface and at infinity will 
be functions of time 

P,(t) = Po - PAsin 27rft ( 1 4 )  

where Po is the steady-state ambient pressure; f ,  the 
ultrasonic frequency; and PA, the amplitude of the 
driving ultrasound pressure. A sign convention is 
used so that as the time initially increases the pres- 
sure falls and the radius of the bubble increases. 

Putting ( 1 3 )  and ( 1 4 )  in eq. (8) leads to the equa- 
tion that governs the evolution of the bubble: 

- (Po - PAsin 27rft) - P, - 131 
under the initial conditions R(0) = Ro, R(0)  = 0 with 
P,,, to be calculated by ( l l ) ,  and PA is defined by the 
media acoustic response as described in the next 
section. It should be noted that if P, = 0, eq. ( 1 5 )  
reduces to well-known Notlingk-Neppiras dynamic 
bubble e q ~ a t i o n . ~ ~ . ~ ~  

Acoustic Pressure and Void Fraction 

The ultrasound pressure amplitude is calculated by 
the formula26 
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where c, is the velocity of the sound in polymer, and 
A ,  the ultrasound amplitude. The presence of small 
gas bubbles in a polymer (bubbly polymer) produces 
acoustic properties differing a great deal from those 
of pure polymer, even if the gas concentration is 
small. This is because the compressibility of the 
mixture is substantially altered, reducing the speed 
of sound. The problem of the sonic speed in a bubbly 
media has been studied extensively in the litera- 

A homogeneous polymer mixture of bubbles 
with equal radii Ro can be characterized by the void 
fraction cp which is the volume occupied by the bub- 
ble in a unit volume of the mixture. If N b  is the 
number of bubbles per unit volume, the volume 
fraction is 

Nucleation and growth of gas bubbles in cross- 
linked elastomers were studied experimentally by 
Gent and T o m p k i n ~ . ~ ~  It was found that the number 
of primary bubbles per unit volume depends expo- 
nentially on a negative driving pressure. Below some 
value of pressure, P,, no visible bubbles formed. 
Taking into account this experimental result, one 
can write for the case of negative driving pressure 

- 

where No and p are constants characterizing initial 
bubble concentration and sensitivity of bubble for- 
mation in polymer due to pressure variation. These 
constants depend on the conditions of bubble for- 
mation and material properties. In eq. (18), H( - ) is 
the Heviside function (unit step function). 

The sound velocity in the bubbly media is cal- 
culated as32 

where co is the sound velocity in polymer without 
bubbles, and cM, the velocity defined by Mallock's 
formula 

For the small voids concentration, cp 6 1, velocity 
(20) is consistent with the well-known result by van 
Wijngaarden'? 

After substitution (19) into (16) with account of 
(17), (18), and (20), eq. (16) reduces to the following 
transcendental equation with respect to acoustic 
pressure amplitude: 

Solving eq. (21) with respect to PA, the number of 
bubbles, Nb, and their volume fraction cp are calcu- 
lated by (18) and (17), respectively. 

Figure 3 presents plots of the acoustic pressure 
amplitude vs. the ambient pressure as obtained from 
numerical solution of the eq. (21). Results are shown 
for adiabatic (y = 1.4) bubble behavior with their 
average radius Ro = 25 pm. The sound velocity co is 
taken to be 2000 m/s. The parameter No = 4.7 - lo3 
m-3 is adopted from experimental data presented by 
Gent and Tompkin~.~'  They pointed out that the 
value of No is not sensitive to temperature variation, 
whereas the rate of bubbles formation (which is pro- 
portional to parameter p) increased markedly at 
higher temperatures. Due to this reason, parameter 
No is kept constant, while parameter p in eqs. (18) 
is varied. The dependence of the acoustic pressure 
amplitude on the ambient pressure is highly nonlin- 
ear. Bubbles start nucleating if the driving pressure 

- Po) exceeds some value P,. The presence of 

Ambient Pressure (Po,  MPa)  

Figure 3 Dependence of the acoustic pressure amplitude 
on the ambient pressure at various values of /3, MPa-'. f 
= 20 kHz, A = 31.5 pm, and Ro = 25 pm. 
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Figure 4 Dependencies of the (a) void fraction and (b) 
driving pressure on the ambient pressure at various values 
of p, MPa-'. f = 20 kHz, A = 31.5 pm, and Ro = 25 pm. 

voids reduces the sound velocity in bubbly media 
and, consequently, according to eq. (16), reduces the 
acoustic pressure amplitude. An increase in ambient 
pressure results in suppressing the voids formation. 
This leads to the increasing in acoustic pressure 
amplitude until the ambient pressure reaches some 
value P,* which is high enough to suppress com- 
pletely the nucleation of bubbles. Further increase 
in ambient pressure does not change the value of 
acoustic pressure amplitude which reaches its upper 
limit P i  defined by the sound velocity in the polymer 
without the presence of voids: P i  = 2apoc ,$A. The 
value P,* as well as the slope of acoustic pressure 
amplitude dependence on ambient pressure are 
functions of parameter /3 as illustrated in Figure 3. 

The dependence of void fraction on ambient 
pressure has a pronounced maximum [Fig. 4(a)]. 
This maximum is attributed to the maximum of the 
driving pressure, (PA - Po), depicted in Figure 4(b). 
The initial increase of the void fraction at low values 
of ambient pressures is attributed to the increase in 

acoustic pressure amplitude. However, further in- 
crease in ambient pressure leads to a decrease in (PA 
- Po) and therefore lowers the number of voids 
formed. 

Maximum Cavitation Bubble Radius 

The maximum radius of the collapsing bubble is an 
important parameter affecting the rate of network 
degradation. According to eq. (4), the rate of breakup 
of bonds is proportional to R$nx. The value R,,, is 
determined from the numerical solution of the dy- 
namic bubble eq. (15) for media elastic response P ,  
defined by eq. (11) and acoustic pressure PA being 
calculated from eq. (21). 

The dependencies of the relative radius R/Ro on 
the dimensionless time t/tp are shown in Figure 5 
with tp = (1/f) being the ultrasound wave period. 
The parameter of the illustrated family of curves is 
the ambient pressure Po (in MPa). For a given value 

Dimensionless Time (fit,,) 

0 0 . 2  0 . 4  0 . 6  0 .  

Dimensionless Time (f/t,) 

Figure 5 Bubble radius-time curves for different am- 
bient pressures (solid lines) for media elastic response and 
(dashed lines) for the Notlingk-Neppiras model. f = 20 
kHz; A = 31.5 pm; Ro = 25 pm; /3 = 5 MPa-'. 
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a 
lzi 

of Po, the value of acoustic pressure amplitude is 
determined uniquely according to Figure 3. The pa- 
rameters y and n are adopted as y = 1.4 and n 
=0.036 N/m. The constants W,  and W, of the 
stored-energy function (12) were determined from 
the experimental stress-strain curve for SBR. This 
data along with the fitted curve are given in Figure 
6. The curve corresponds to eq. (12) with W, = 0.12 
MPa and W, = 0.085 MPa. 

The character of the radius-time curve depends 
on the value of the ratio pA/po provided that all 
other parameters are the same. If the acoustic pres- 
sure amplitude is much larger than the ambient 
pressure, a cavity will expand to many times its 
original size. As seen from Figure 3, the higher values 
of Po lead to the lower ratios of PA/Po due to satu- 
ration of the acoustic pressure amplitude at high 
ambient pressures. Furthermore, if the acoustic 
pressure amplitude is equal to the ambient pressure, 
a cavity will not expand since there is no driving 
force to its expansion (PA - Po = 0). Therefore, the 
closer to unity the ratio PA/PO is, the lower is the 
value of Rmax/Ro, as shown in Figure 5(a) and (b). A 

4 
I 1 

0 1 .  1 
0 0.1 0 . 2  0.3 0.4 

Dimensionless Time (t/t,) 

o’20 7 0 Experiment 

0.00 I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

111 

Figure 6 Mooney-Rivlin plot of samples of the virgin 
SBR vulcanizate at  the elongational speed of 0.42 mm/s. 

larger value of Rmax/Ro causes a more violent col- 
lapse. The bubble response is highly affected by the 
ambient pressure. At  high ambient pressure when 
the ratio pA/PO approaches 1, the bubble becomes 
involved in nonlinear oscillations, as indicated in 
Figure 5(c) and (d). Although with increase in am- 
bient pressure the amplitude of the acoustic pressure 
increases, the driving pressure is not high enough 
to collapse the bubble as a transient cavity. The first 
collapse will occur near the peak of acoustic pressure. 
On collapse, the bubble may not disintegrate as it 
would if it were transient, but may oscillate for the 
remainder of the ultrasound cycle at its own natural 
frequency. 

Figure 5 also illustrates the media elastic effect 
on the dynamics of a bubble cavitation. The solu- 
tions of eq. (15) with neglecting of the media elastic 
response (P,  = 0) is plotted in Figure 5 by dashed 
lines. The main conclusion is that media elastic re- 
sponse reduces the maximum cavitation bubble ra- 
dius as well as the collapse time. This effect is ob- 
vious since in eq. (15) the elastic term P, has the 
same influence on bubble dynamics as does the am- 
bient pressure Po. At low ambient pressures, the 
bubble according to the Notlingk-Neppiras model 
shows characteristic dynamic behavior; namely, 
during the rarefied ultrasound pressure phase, a 
point is reached where the bubble has grown so large 
that it has no time to collapse completely before the 
end of pressure cycle. It will collapse as a transient 
cavity near the next positive pressure peak. This 
effect is illustrated in Figure 5(a) for ambient pres- 
sures of 0.05 and 0.1 MPa. In contrast, for the case 
with inclusion of the media elastic response, at low 
ambient pressures, the bubble collapses as a tran- 
sient cavity during one pressure cycle. Also, all three 
radius-time curves corresponding to the pressures 
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Ambient Pressure ( f , , ,MPri )  

Ambient Pressurc ( f o , M P r i )  

Figure 7 Maximum relative radius of the cavity as a func- 
tion of ambient pressure for media elastic response (solid 
line) and for the Notlingk-Neppiras model [dashed and dot- 
ted lines correspond to exact solution of eq. (15) and ap- 
proximation (ZZ)]. f = 20 kHz; A = 31.5 pm; Ro = 25 pm. 

Po = 0.05, 0.1, and 0.5 MPa are almost indistin- 
guishable [solid curves on Fig. 5(a)]. 

Figure 7 summarizes the results of calculation of 
the maximum cavitation radius as  a function of am- 
bient pressure for two different values of parameter 
@ (in MPa-') which specifies the rate of voids for- 
mation. The higher value of @ leads to a lower max- 
imum cavitation bubble radius due to the fact that 
the acoustic pressure amplitude decreases with in- 
creasing @. It can be seen that media elastic response 
has a strong effect on maximum cavitation radius, 
reducing its value up to 50%. 

If one neglects the force due to the surface ten- 
sion, the following analytical approximation can be 
derived33 for the Notlingk-Neppiras model: 

For comparison, approximation (22 )  is also plotted 
in Figure 7. It can be seen that eq. ( 2 2 )  closely ap- 
proximates R,,, derived from the Notlingk-Nep- 
piras model. It should be noted that in the present 
case the surface tension has very little effect on the 
cavitation process. 

Die Filling Modeling 

The flow in a disk die with outer radius R1 and inner 
radius R2 is modeled as a one-dimensional flow in a 
strip of length L = R1 - R2 and varying width w. 
Width variation along the flow direction is calculated 
as  w ( x )  = 27r(R1 - x ) .  Schematics of this die along 
with computational flow domain are shown in Figure 
8. The simulation of one-dimensional flow in a cavity 
of simple geometry can be summarized in terms of 
transport equations. For the case of a strip of width 
w and half-gap thickness h, these equations are34,35: 

h 

Q = w udz (23 )  
-h  

Q 

Q 

tational domain. 
R,,, x 0.4 f (1 - 2) $2 (22 )  

L=R,-R, 

Figure 8 Schematics of the die geometry and compu- 
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where Q denotes the volumetric flow rate; x, the 
streamwise direction; and z, the gapwise (transverse) 
direction. Further, u denotes the velocity in the x 
direction; q ,  the shear viscosity; Po, the pressure; 
and T,  the temperature, with cp and kth denoting 
specific heat and thermal conductivity, respectively. 
@ = q+' and Qs = 27~'t'fE" are rates of viscous and 
ultrasound dissipation, respectively, where + 
= I(du)/(dz)l is the shear rate, t = [ A / ( 2 h ) ]  is the 
ultrasound strain amplitude, and E" is the loss mod- 
ulus at  frequency f .  Qd = [ ( E c f i ~ ,  + C EvkIVJ/N~l  
is the rate of energy consumption due to devulcan- 
ization. Here, Ec is the energy to rupture a C - C  
bond, and E,,, the energy of the scission of k-type 
crosslinks. 

Equation (23)  represents a balance of mass, 
whereas eq. (24)  gives the force balance in the 
streamwise direction between the viscous shear 
stress and the pressure gradient. Inertial effects have 
been omitted from the left side of eq. (24)  due to 
the high viscosities typical of polymer melts. Equa- 
tion (25)  is the quasi-stationary energy equation. It 
indicates that the change in temperature as one fol- 
lows a material particle is due to the net effect arising 
from the gapwise thermal conduction, viscous and 
ultrasound heating, and energy consumption by de- 
vulcanization. 

Equations (23)-(25) have to be supplemented 
with a viscosity function as well as boundary con- 
ditions. The viscosity is a function of a temperature, 
shear rate, and gel fraction. This function is rep- 
resented by a power-law model: 

The parameters of eq. (26)  are based upon fitting 
experimental data obtained for dependence of vis- 
cosity vs. shear rate, temperature, and gel fraction 
of devulcanized rubber. The following function is 
used to describe temperature and gel fraction de- 
pendence of the viscosity of devulcanized rubber ob- 
tained in a wide range of processing conditions: 

m(T, [) = B exp - r%] 
where B is a constant, and b([) ,  a polynomial func- 
tion. 

For the case of symmetry with respect to plane z 
= 0, the boundary conditions on u(x, z ) ,  T(x, z ) ,  and 
Po(x) are 

u(x, h) = 0; O I X I L  

O I X I L ;  O < X l L  

where To and T,  are prescribed temperatures at  the 
die entrance and die wall, respectively, and Pat, is 
atmospheric pressure. 

The present simulation will be carried out for a 
constant flow rate. The pressure distribution in the 
die is an unknown function which has to be calcu- 
lated using an iterative procedure. 

S IM U LAT I0 N ALG 0 RIT H M 

The simulation procedure of the flow in the die is 
simplified by introducing the function S = ( z 2 /  
T )  dz which is a measure of the fluidity of the polymer 
melt. Then, the pressure gradient A, = - [ ( dPo) /  
( d x )  1 ,  velocity u ,  and shear rate + are expressed 
from eqs. ( 2 3 )  and ( 2 4 ) ,  taking into account the 
boundary conditions ( 28).  Resulting equations are34 

z 
+ = - A , -  ( 3 1 )  

77 

The energy eq. ( 2 5 )  is approximated by a finite- 
difference scheme. For stability reasons, an upwind 
difference is used to express the streamwise con- 
vection term. An implicit representation in the gap- 
wise direction is used for the temperature in the 
conduction term. Introducing an uniform mesh (xi, 
z j )  as 

the finite-difference approximation of the energy eq. 
( 2 5 )  in the inner nodes is 
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I 
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N 

A 

0 Figure 9 Computational End flow chart. 

The finite-difference approximations of the tem- 
perature boundary conditions (29)  with the second- 
order accuracy are 

Tl , j  = To;  1 I j I N, 

4 1 T .  i , ~  = -T. 1.2 - -T. i , 3 ,  T.  i , ~ , = T w ;  

l < i < N ,  (34)  

In eq. (33 ) ,  Q!,?) is the grid function of the total 
energy consumption: 

The simulation algorithm is as follows: When the 
melt front moves from a position xi to x i + l ,  the tem- 

perature distribution along the new melt front is 
initially calculated using the old values of u, i / ,  and 
T at xi. Then, the pressure gradient, velocity, and 
shear rate are calculated by eq. (31 ) based upon the 
updated temperature field. The pressure is deter- 
mined by numerical quadrature of A,, starting with 
zero at  the melt front and integrating back toward 
the die entrance. During this procedure, the value 
of the pressure is updated first. With this updated 
ambient pressure, Po, the acoustic pressure ampli- 
tude, PA, is calculated by eq. ( 21 ) using the Newton- 
Raphson method. Then, the number of bubbles per 
unit volume, N,, , is evaluated from eq. ( 18). At the 
same time, the bubble growth and collapse process 
is simulated and R,,, is evaluated according to eq. 
( 15).  Calculated values of Nh and R,,, are utilized 
to determine the number of broken bonds according 
to eq. (4) and material gel fraction, i j ,  and crosslink 
density, N,( t )  , according to eqs. ( 6 )  and ( 7 ) .  After 
that, the temperature T ,  pressure gradient A,, and 
kinematics characteristics u, i /  are reevaluated using 
the updated values of the gel fraction and pressure. 
This cycle is then repeated. The iterative process is 
continued until a prescribed convergence criterion 
is satisfied between successive cycles. The calcula- 
tion is continued until the die is filled. The final 
distribution of various quantities corresponds to the 
stationary solution of the devulcanization process. 
Figure 9 shows the computational flow chart out- 
lined above. The simulation results based on the 
proposed devulcanization model and computational 
algorithm will be presented in Part I1 of this study. 

CONCLUSIONS 

The present study describes theoretical results re- 
lated to a novel ultrasonic devulcanization technol- 
ogy for recycling used tires and other rubber waste. 
A model of the devulcanization process is proposed. 
The model is based upon the ability of high-intensity 
ultrasonic waves to introduce cavitation in a vul- 
canized rubber. In the modeling of the cavitation 
process, a stress term arising due to elastic defor- 
mation of rubber is incorporated into evolution of 
bubble dynamics. In addition, the dependence of the 
number of bubbles per unit volume on the difference 
between acoustic and ambient pressures is intro- 
duced into the model. These values along with the 
value of R,,, and various bond energies are used to 
determine the amounts of various broken bonds. 
This breakup of a three-dimensional network in 
crosslinked rubbers on a microlevel is combined with 
flow modeling on a macrolevel using proposed mod- 
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ification of the power-law rheological equation. The 
latter incorporates the dependence of viscosity of 
devulcanized rubber on shear rate, temperature, and 
gel fraction. A simulation procedure for velocity, 
temperature, pressure, and structural characteristics 
such as gel fraction and fractions of various broken 
bonds is described. 

This work was supported by Grant DMI-9312249 from 
the National Science Foundation, Division of Engineering. 
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